8 research outputs found

    The relationship between the morphology and kinematics of galaxies and its dependence on dark matter halo structure in simulated galaxies

    Get PDF
    Galaxies are among nature’s most majestic and diverse structures. They can play host to as few as several thousands of stars, or as many as hundreds of billions. They exhibit a broad range of shapes, sizes, colours, and they can inhabit vastly differing cosmic environments. The physics of galaxy formation is highly non-linear and involves a variety of physical mechanisms, precluding the development of entirely analytic descriptions, thus requiring that theoretical ideas concerning the origin of this diversity are tested via the confrontation of numerical models (or “simulations”) with observational measurements. The EAGLE project (which stands for Evolution and Assembly of GaLaxies and their Environments) is a state-of-the-art suite of such cosmological hydrodynamical simulations of the Universe. EAGLE is unique in that the ill-understood efficiencies of feedback mechanisms implemented in the model were calibrated to ensure that the observed stellar masses and sizes of present-day galaxies were reproduced. We investigate the connection between the morphology and internal kinematics of the stellar component of central galaxies with mass M* > 10^9.5 Msun in the EAGLE simulations. We compare several kinematic diagnostics commonly used to describe simulated galaxies, and find good consistency between them. We model the structure of galaxies as ellipsoids and quantify their morphology via the ratios of their principal axes. We show that the differentiation of blue star-forming and red quiescent galaxies using morphological diagnostics can be achieved with similar efficacy to the use of kinematical diagnostics, but only if one is able to measure both the flattening and the triaxiality of the galaxy. Flattened oblate galaxies exhibit greater rotational support than their spheroidal counterparts, but there is significant scatter in the relationship between morphological and kinematical diagnostics, such that kinematically-similar galaxies can exhibit a broad range of morphologies. The scatter in the relationship between the flattening and the ratio of the rotation and dispersion velocities (v/σ) correlates strongly with the anisotropy of the stellar velocity dispersion: at fixed v/σ, flatter galaxies exhibit greater dispersion in the plane defined by the intermediate and major axes than along the minor axis, indicating that the morphology of simulated galaxies is influenced significantly by the structure of their velocity dispersion. The simulations reveal that this anisotropy correlates with the intrinsic morphology of the galaxy’s inner dark matter halo, i.e. the halo’s morphology that emerges in the absence of dissipative baryonic physics. This implies the existence of a causal relationship between the morphologies of galaxies and that of their host dark matter haloes. Using these tools, we also investigate the morphology and kinematics of central galaxies with mass M* > 10^9.5 Msun and their globular cluster (GC) populations in the EAGLE spinoff project E-MOSAICS that incorporates the MOSAICS model of stellar cluster formation and evolution. We find that metal-poor and metal-rich GC populations (split by a threshold at [Fe=H] = -1) exhibit differing characteristic morpho-kinematic properties. The former are significantly more elliptical and dispersion-supported than the latter. In detail, the relations connecting the kinematic properties of the populations with those of their host galaxy exhibit good agreement with available observations, with the velocity dispersions of both metal-poor and metal-rich GC populations correlating positively with that of the host galaxy. The rotational velocity of the metal-rich globular cluster population also correlates positively with that of the host galaxy. The relationship between the morpho-kinematics of the metal-rich globular clusters and the host galaxy’s field stars exhibits a scatter that is sensitive to the relative ages of the two populations: for fixed globular cluster kinematics, the field star population is more disky/rotation-supported if they are younger. We confirm that the connection between the morpho-kinematics of galaxies and their velocity dispersion anisotropy revealed in EAGLE is also exhibit in the higher-resolution E-MOSAICS simulation. However, the same behaviour is not seen in the metal-rich globular clusters, which we speculate is a consequence of them not representing a self-gravitating system

    The relationship between the morphology and kinematics of galaxies and its dependence on dark matter halo structure in EAGLE

    Get PDF
    We investigate the connection between the morphology and internal kinematics of the stellar component of central galaxies with mass M⋆ > 109.5 M⊙ in the EAGLE simulations. We compare several kinematic diagnostics commonly used to describe simulated galaxies, and find good consistency between them. We model the structure of galaxies as ellipsoids and quantify their morphology via the ratios of their principal axes. We show that the differentiation of blue star-forming and red quiescent galaxies using morphological diagnostics can be achieved with similar efficacy to the use of kinematical diagnostics, but only if one is able to measure both the flattening and the triaxiality of the galaxy. Flattened oblate galaxies exhibit greater rotational support than their spheroidal counterparts, but there is significant scatter in the relationship between morphological and kinematical diagnostics, such that kinematically-similar galaxies can exhibit a broad range of morphologies. The scatter in the relationship between the flattening and the ratio of the rotation and dispersion velocities (v/σ) correlates strongly with the anisotropy of the stellar velocity dispersion: at fixed v/σ, flatter galaxies exhibit greater dispersion in the plane defined by the intermediate and major axes than along the minor axis, indicating that the morphology of simulated galaxies is influenced significantly by the structure of their velocity dispersion. The simulations reveal that this anisotropy correlates with the intrinsic morphology of the galaxy’s inner dark matter halo, i.e. the halo’s morphology that emerges in the absence of dissipative baryonic physics. This implies the existence of a causal relationship between the morphologies of galaxies and that of their host dark matter haloes

    The relation between galaxy morphology and colour in the EAGLE simulation

    Get PDF
    We investigate the relation between kinematic morphology, intrinsic colour and stellar mass of galaxies in the EAGLE cosmological hydrodynamical simulation. We calculate the intrinsic u − r colours and measure the fraction of kinetic energy invested in ordered corotation of 3562 galaxies at z = 0 with stellar masses larger than 1010 M⊙. Inspection of gri-composite images suggests that the kinematic morphology is a useful proxy for visual morphology. EAGLE produces a galaxy population for which morphology is tightly correlated with the location in the colour–mass diagram, with the red sequence mostly populated by elliptical galaxies and the blue cloud by disc galaxies. Satellite galaxies are more likely to be on the red sequence than centrals, and for satellites the red sequence is morphologically more diverse. These results show that the connection between mass, intrinsic colour and morphology arises from galaxy-formation models that reproduce the observed galaxy mass function and sizes

    De Staatkundige Opbouw

    No full text

    Trojan Genes and Transparent Genomes: Sexual Selection, Regulatory Evolution and the Real Hopeful Monsters

    No full text
    corecore